Chi-squared Practice Problems

(solutions below)

- 1. A zookeeper hypothesizes that changing the intensity of the light in the primate exhibits will reduce the amount of aggression between the baboons. In exhibit A, with a lower light intensity, he observes 36 incidences of aggression over a one month period. In exhibit B, with normal lights, he observes 42 incidences of aggression. Should he support or reject his hypothesis?
- 2. In a certain reptile, eyes can be either black or yellow. Two black eyed lizards are crossed, and the result is 72 black eyed lizards, and 28 yellow-eyed lizards. Is this simple, autosomal domainance?
- 3. In cats, two of the alleles that determine fur color (black and orange) are codominant and sexlinked. A calico female (X^BX^O) is mated (more than a few times) to a black male (X^By) , producing the following kittens: 78 black females, 65 calico females, 81 black males, 45 orange males. Do the results fit the expected phenotypic ratio?
- 4. In fruit flies, eye color is hypothesized to be a sex-linked trait with red being dominant to white. A female carrier is mated with a white-eyed male, producing 132 normal females, 124 white-eyed females, 126 normal males, and 136 white-eyed males. Do these data support the hypothesis that the trait is sex-linked and recessive?

1

Condition	0	Е	(O-E)	(O-E) ²	(<u>O-E</u>) ² E
Low light	36	39	3	9	0.23
Normal light	42	39	3	9	0.23
Total	78	78			0.46

dF = 2-1 = 1

at p= 0.05, critical value = 3.84. χ^2 < 3.84, therefore we fail to reject the null hypothesis. There is no difference between the two groups. Light had no effect.

2.

Phenotype	О	Е	(O-E)	$(O-E)^2$	(O-E) ² E
Black eyes	71	75	4	16	0.21
Yellow eyes	29	25	4	16	0.64
Total	100	100			0.85

 $\overline{dF} = 2 - 1 = 1$

at p= 0.05, critical value = 3.84. χ^2 < 0.85, therefore we fail to reject the null hypothesis. There is no difference between the two groups. It's simple, autosomal dominance.

3.

Phenotype	О	Е	(O-E)	$(O-E)^2$	$(O-E)^2$
					E
Black female	78	67	11	121	1.81
Calico female	65	67	2	4	0.06
Black male	81	67	14	196	2.93
Orange male	45	67	22	484	7.22
Total	269	268			12.02

dF = 4-1 = 3

at p= 0.05, critical value = 7.82. $\chi^2 > 7.82$, therefore we reject the null hypothesis. There is a significant difference between the expected and observed results. From these data, it does not appear to be codominant and sex-linked. We know that the trait is, however, so the data are flawed, likely because of a small sample size.

4.

Phenotype	О	Е	(O-E)	(O-E) ²	(O-E) ² E
Normal female	132	129	3	9	0.07
White-eyed female	124	129	5	25	0.19
Normal male	126	129	3	9	0.07

White-eyed	136	129	7	49	0.38
male					
Total	518	516			0.71

dF = 4-1 = 3 at p= 0.05, critical value = 7.82. χ^2 < 7.82, therefore we fail to reject the null hypothesis. There is no significant difference between the expected and observed results.