Practice with Sex Linkage and Other Cool Stuff - Solutions

1. a) all red eyed, half male

b) 1/4 red eyed female, 1/4 white eyed female, 1/4 red eyed male, 1/4 white eyed male

c) half female, all red eyed; half male, all white eyed.

d) half females are carriers; half males are white-eyed

b) no because father is normal so cannot donate X^h

3. a) $\begin{array}{l} P X^{N}X^{n} x X^{n}y \\ F_{1} X^{n}X^{n}, X^{n}y, X^{N}X^{n}, X^{N}y \end{array}$

b) $X^{N}X^{N}$ individual would have to receive X^{N} from father who would be dead

c) unlikely that X^N would live long enough to breed, also heterozygous individuals would be less common in nature.

4. b - brown; v - vermillion; $b+X^{v+}$ - wt; $X^{b}v$ - white

- a) P b+b+ $X^{v+}X^{v+}$ (wild-type female) x bb $X^{v}y$ (white-eyed male) F₁ b+b $X^{v+}X^{v}$, b+b $X^{v+}y^{-}$ - all wild type
- b) P b+b $X^{v+}X^v$ (wild-type female) x b+b $X^{v+}y$ (wild-type male) F₁ b+b+ $X^{v+}X^{v+}$, b+b+ $X^{v+}y$, b+b $X^{v+}X^{v+}$, b+b X^vy , b+b+ X^vy , b+b X^vy ,

b+bX^{v+}X^{v+}, b+bX^{v+}y, bbX^{v+}X^{v+}, bbX^{v+}y, b+bX^{v+}X^v, b+bX^vy, bbX^{v+}y, bbX^vy

- 9 wild type:3 brown:3 vermillion:1 white

c) P $bbX^{v+}X^{v+}$ (brown-eyed female) x $b+bX^{v}y$ (vermilion-eyed male) F₁ $b+bX^{v+}X^{v}$, $b+bX^{v+}y$, $bbX^{v+}X^{v}$, $bbX^{v+}y$ - 2 wild type:2 brown

5. a) 0 - Jake always gives the normal allele

b) $P(X^h y) = 1/2 \times 1/2 = 1/4$

c) 1/2 - Lauren gives the mutant allele half the time

d) P(4 X^hy sons) = $1/4 \ge 1/4 \ge 1/4 \ge 1/16$

e) Assuming her mother is normal and not a carrier, she would inherit the X^h allele from her father all the time, making her a carrier.

f) 1/2 chance of being a carrier; 1/2 chance of having hemophilia. She must inherit the X^h from her father so she could not be free of the allele.

6. 1/4 to have a color blind daughter. 1/2 that first son will be color blind. Notice that we are told the child is a son so we do not have to consider the probability of that happening.

7. a)
$$1/4$$
 (b) $1/2$ (c) $1/4$ (d) $\frac{1}{2}$

8. a) 1/4

b) no calico males unless nondisjunction occurs resulting in Klinefleter syndrome

9. B — D --- C — A 10 10 20 10. S — B — F — C 5.5 2.5 3