Learning Genetics Can Be Fun - Solutions

- 1. Two black dogs could be homozygous black (BB) or heterozygous black (Bb). Yellow must be homozygous, therefore cannot be the same genotype as black.
- 2. P Cc x Cc

F₁ CC, Cc, Cc, cc both parents are normal but "carry" the allele for CF. One in four children will inherit it.

- 3. a) P Rr x rr
- b) R, r and r, r

F₁ Rr, Rr, rr, rr 1 round:1 wrinkled F₂ RR, Rr, Rr, rr 3 round:1 wrinkled

4. P Ll x ll

F₁ Ll, Ll, ll, ll 1 long:1 short

5. P T_ x tt

F₁ 327 tall: 321 short- almost 1:1 therefore unknown parent must be heterozygous. Note: homozygous (TT) would give ALL tall plants in F₁.

6. The presence of all smooth in the offspring means smooth is dominant.

P SS x ss

 F_1 Ss

F₂ 3:1

7. a) P Ss x Ss

F₁ SS, Ss, Ss, ss

b) P S_ x _ _

The female must be heterozygous as she produced non-spotted pups. The unknown male must be homozygous recessive (ss). If he were homozygous dominant, all pups would be spotted. If he were heterozygous, you would expect a 3:1 ratio in pups.

8. (i) P T x tt

F₁ tt

11 11

The male must be heterozygous (Tt) to be able to produce both trotters and pacers. If he were homozygous dominant he would produce only trotters.

(ii) P T_x tt

F₁ Tt

(iii) $P T_x T_{\underline{t}}$

 F_1 tt

9. Normal woman Pp (must be heterozygous because father was albino)

Husband pp

Husband's parents both Pp

Children Pp, Pp, pp

- 10. test cross W_x ww
- 11. P Pp x Pp

F₁ PP, Pp, Pp, pp chance of PKU is 1/4

```
12.
        P Bb x Bb
      F<sub>1</sub> BB, Bb, Bb, bb
a) 1/4
                (b) 1/4
                                (c) 1/2
d) 1 homozygous brown:2 heterozygous brown:1 homozygous blonde
e) 3 brown:1 blonde
f) not possible because blonde (b) is recessive
g) C = \text{curly}; c = \text{straight}
h) P Cc x cc
F<sub>1</sub> Cc, Cc, cc, cc
i) C, c
                                                 (1) 1/2
                                                                 (m) 1/2
                (j) c, c
                                (k) 0
n) 1 heterozygous:1 homozygous recessive
o) 1 curly:1 straight
p) No. Straight hair is recessive so individual MUST be homozygous (cc).
13. B - black; b - white; S - short; s - long
a) PBBSs x bbss
F<sub>1</sub> BbSs, Bbss
                                1 black, short: 1 black, long
b) P BbSs x bbss
F<sub>1</sub> BbSs, Bbss, bbSs, bbss
                                1 black, short:1 black, long: 1 white, short:1 white, long
c) P BBss x BbSs
F<sub>1</sub> BBSs, BBss, BbSs, Bbss 1 black, short:1 black, long
d) i) (a) 1/2
                  (b) 1/4
                             (c) 1/2
ii) (a) 1/2
              (b) 1/4
                          (c) 1/2
iii) (a) 0
             (b) 1/4
                         (c) 0
14. B - black; b - white; S - solid; s- spotted
        male
                        female
a) P
        B_S_x
                        bbS
        2 BbS_, 2 bbS_
\mathbf{F}_1
Some white pups so the male must be Bb. The absence of any non-spotted pups suggests that female A is
SS but we can't say for sure.
b) P
        BbSs x
                        B_S_
F_1
        bbss
                the presence of white, non-spotted pups means that female B must be BbSs
c) P
        BbSs x
                        bbss
        bbSs, bbss, BbSs, Bbss
The genotype of female C can be determined from her phenotype.
15. S^R - round; S^L - long
P S^R S^R \times S^L S^L
F_1 S^R S^L, S^R S^L, S^R S^L, S^R S^L
P S^R S^L \times S^R S^L
F_2 S^R S^R, S^R S^L, S^R S^L, S^L S^L
                                (incomplete dominance)
```

16. $P S^N S^M \times S^N S^M$

```
F_1 S^NS^N, S^NS^M S^NS^M, S^MS^M
                                            25% chance of having homozygous recessive child
17. C<sup>R</sup>C<sup>R</sup> - chestnut; C<sup>M</sup>C<sup>M</sup> - cremello; C<sup>M</sup>C<sup>R</sup> - palomino
P C^{M}C^{R} \times C^{M}C^{M}
F_1 C^M C^M, C^R C^M
                               1 cremello:1 palomino
          PF^RF^W \times F^RF^W
18.
          F_1 F^R F^R, F^R F^W, F^R F^W. F^W F^W
a) ½ pink
b) 1/4 red
c) 1/4 white
d) 1:2:1
19. woman I^B x man I^A
   F_1 ii is possible if mother and father were both heterozygous. The facts are inconclusive.
20. P \circlearrowleft ii x \circlearrowleft I<sup>A</sup>I<sup>B</sup>
F<sub>1</sub> I<sup>A</sup>i, I<sup>B</sup>i
AB \circ could produce AB offspring if \circ were type A, B, or AB; she could never produce type O in F<sub>1</sub>
because she always donates either A or B.
21. a) P C<sup>h</sup>C<sup>a</sup> x C<sup>a</sup>C<sup>a</sup>
F_1 C^hC^a, C^aC^a
                               1 himalayan:1 albino
b) P CC<sup>a</sup> x C<sup>ch</sup>C<sup>a</sup>
F<sub>1</sub> 2 C_, C<sup>ch</sup>_, C<sup>a</sup>C<sup>a</sup>
c) P CchCch x CchCa
F<sub>1</sub> C<sup>ch</sup>C<sup>ch</sup>, C<sup>ch</sup>C<sup>a</sup>
                               1 chinchilla:1 light gray
d) P C<sup>ch</sup>C<sup>h</sup> x C<sup>a</sup>C<sup>a</sup>
                               test cross
F_1 5 C^h\underline{C^a}, 5 C^{ch}\underline{C^a}
22. note: cc = no purple
P Ppcc x PPCc
gametes Pc, pc
                             PC, Pc
F<sub>1</sub> PPCc, PPcc, PpCc, Ppcc
phenotypes 1 purple, curved: 1 white, straight: 1 purple, curved: 1 white, straight (1:1)
23. a) P CCBB (black) x Ccbb (brown)
F<sub>1</sub> CCBb (black), CcBb (black)
b) P ccBB (albino) x CcBb (black)
F<sub>1</sub> CcBB (black), CcBb (black), ccBb (albino), ccBb (albino)
c) P CcBb (black) x ccbb (albino)
F<sub>1</sub> CcBb (black), Ccbb (brown), ccBb (albino), ccbb (albino)
```

d) P CcBb (black) x CcBb (black)

F₁ CCBB (black), CCBb (black), CcBB (black), CCbb (brown), CcBb (black), Ccbb (brown), ccBB (albino), ccBb (albino), ccbb (albino)

note: you would get the normal 9:3:3:1 as in any heterozygous dihybrid cross but ccBB, ccBb, and ccbb all combine to give 4 albino (a bit tricky, eh?)

24. a) 4 children

- b) A is Dd, B is Dd
- c) M is dd, N is dd

25.

