Math 9 Accelerated - Exam Review: Chapter 8 Answer Section

MULTIPLE CHOICE

1. C
2. B
3. C
4. D
5. C
6. B

SHORT ANSWER

8. $v^{\circ}=58^{\circ}, w^{\circ}=30^{\circ}$
9. $d=24.1, e^{\circ}=28^{\circ}$
10. $c^{\circ}=34^{\circ}, d^{\circ}=112^{\circ}$

11. $a^{2}=7^{2}-6^{2}$
$a=\sqrt{49-36}$
$a=\sqrt{13}$
$a=3.6$
12. $m=10.6$
13. Inscribed angle
14. Inscribed angle: $\angle \mathrm{PRQ}$

Central angle: $\angle \mathrm{POQ}$
15. $y^{\circ}=52^{\circ}, z^{\circ}=104^{\circ}$
16. $y^{\circ}=38^{\circ}, z^{\circ}=52^{\circ}$

PROBLEM

17.

$$
\begin{aligned}
\mathrm{OV} & =11 \mathrm{~km}+6400 \mathrm{~km} \\
& =6411 \mathrm{~km} \\
\mathrm{OH} & =6400 \mathrm{~km}
\end{aligned}
$$

Use the Pythagorean Theorem in $\triangle \mathrm{OHV}$ to solve for HV.

$$
\begin{aligned}
\mathrm{HV}^{2} & =\mathrm{OV}^{2}-\mathrm{OH}^{2} \\
\mathrm{HV}^{2} & =6411^{2}-6400^{2} \\
\mathrm{HV}^{2} & =140921 \\
\mathrm{HV} & =\sqrt{140921} \\
\mathrm{HV} & =375.3944 \ldots
\end{aligned}
$$

The vulture was about 375 kilometres from the horizon.
18. The distance from the centre of the mirror to the hook is: OT

So, the distance from the top of the mirror to the hook is: OT -27 cm
Solve for OT.
$\mathrm{OT}^{2}=27^{2}+23^{2}$
$\mathrm{OT}^{2}=1258$
$\mathrm{OT}=\sqrt{1258}$
$\mathrm{OT} \doteq 35.4682 \ldots$
So,
OT - 27 cm
$=35.4682 \ldots \mathrm{~cm}-27 \mathrm{~cm}$
$=8.4682 \ldots \mathrm{~cm}$
So, the hook is about 8.5 cm above the mirror.
19.

Draw a radius from the centre of the pipe, O , to an edge of the path, E.
Label the midpoint of the path F .
OE is a radius, so: $\mathrm{OE}=2.6 \mathrm{~m}$
$\mathrm{OF}=3.9 \mathrm{~m}-2.6 \mathrm{~m}$

$$
=1.3 \mathrm{~m}
$$

Use the Pythagorean Theorem in $\triangle \mathrm{OEF}$ to solve for EF .

$$
\begin{aligned}
\mathrm{EF}^{2}+1.3^{2} & =2.6^{2} \\
\mathrm{EF}^{2} & =2.6^{2}-1.3^{2} \\
\mathrm{EF}^{2} & =5.07 \\
\mathrm{EF} & =\sqrt{5.07} \\
\mathrm{EF} & =2.2516 \ldots
\end{aligned}
$$

The width of the path is twice the length of EF.
$2(2.2516 \ldots)=4.5033 \ldots$
So, the width of the path is about 4.5 m .
20. The sum of the central angles in a circle is 360°.
$121^{\circ}+121^{\circ}+x^{\circ}=360^{\circ}$

$$
\begin{aligned}
242^{\circ}+x^{\circ} & =360^{\circ} \\
x^{\circ} & =360^{\circ}-242^{\circ} \\
x^{\circ} & =118^{\circ}
\end{aligned}
$$

$\angle A C B$ is an inscribed angle and $\angle A O B$ is a central angle subtended by the same arc.
So, $\angle \mathrm{ACB}=\frac{1}{2} \angle \mathrm{AOB}$

$$
\begin{aligned}
& y^{\circ}=\frac{1}{2} \times 118^{\circ} \\
& y^{\circ}=59^{\circ}
\end{aligned}
$$

OA and OB are radii, so $\triangle \mathrm{AOB}$ is isosceles with
 $\angle \mathrm{OAB}=\angle \mathrm{OBA}=z^{\circ}$.
The sum of the angles in a triangle is 180°, so in $\triangle \mathrm{AOB}$:
$z^{\circ}+z^{\circ}+118^{\circ}=180^{\circ}$

$$
\begin{aligned}
2 z^{\circ}+118^{\circ} & =180^{\circ} \\
2 z^{\circ} & =180^{\circ}-118^{\circ} \\
2 z^{\circ} & =62^{\circ} \\
z^{\circ} & =\frac{62^{\circ}}{2} \\
z^{\circ} & =31^{\circ}
\end{aligned}
$$

