Transformations of Exponential Functions

• To graph an exponential function of the form $y = a(c)^{b(x-h)} + k$, apply transformations to the graph of the base function, $y = c^x$, where c > 0.

Example 1: Apply Transformations and Sketch a Graph

Consider the base function $y = 3^x$. For each transformed function,

- State the parameters and describe the corresponding transformations.
- Write the mapping rule.
- Graph the base function and the transformed function on the same grid.
- State the domain, range, intercepts, and equation of the horizontal asymptote.

a.
$$y = \frac{1}{3} (3)^{x+4}$$
 b. $y = 2(3)^{-2(x-1)} - 5$

Solution:

a.
$$y = \frac{1}{3} (3)^{x+4}$$

• Compare the function $y = \frac{1}{3} (3)^{x+4}$ to $y = a(c)^{b(x-h)} + k$ to determine the values of the parameters.

- Mapping rule: ______
- Complete each table of values and sketch the graph of the function $\gamma = \frac{1}{2}(3)^{x+4}$.

Equation of the horizontal asymptote : _____

Pre-Calculus 12A

- b. $y = 2(3)^{-2(x-1)} 5$
- Compare the function $y = 2(3)^{-2(x-1)} 5$ to $y = a(c)^{b(x-h)} + k$ to determine the values of the parameters.

- Mapping rule: _______
- Complete each table of values and sketch the graph of the function $y = 2(3)^{-2(x-1)} 5$.

$y = 3^x$		$y = 2(3)^{-2(x-1)} - 5$	
x	у	x	у
-2			
-1			
0			
1			
2			
3			
4			

• For the function $y = 2(3)^{-2(x-1)} - 5$:

Domain: _____ Range: _____

x-intercept: <u>0.58</u> y-intercept: _____

Note – In the next unit, we will learn an algebraic method of solving exponential equations that will enable us to determine the value of the x-intercept.

Equation of the horizontal asymptote : _____

Pre-Calculus 12A

Example 2: Use Transformations of an Exponential Function to Model a Situation

An initial population of 2000 insects is expected to triple every 5 days.

- a. Write an exponential function in the form $y = a(c)^{bx}$ to model this situation.
- b. Use your equation to calculate the insect population in 21 days.

Solution:

- a. Determine the exponential function $y = a(c)^{bx}$:
- b. Insect population in 21 days:

Example 3: Use Transformations of an Exponential Function to Model a Situation

A hockey card that was purchased for \$250 is expected to increase in value by 12% every 3 years.

- a. Write an exponential function in the form $y = a(c)^{bx}$ to model this situation.
- b. Use your equation to calculate the value of the card in 5 years.

Solution:

- a. Determine the exponential function $y = a(c)^{bx}$:
- b. Value of the card in 5 years:

