Transformations of Exponential Functions

- To graph an exponential function of the form $y=a(c)^{b(x-h)}+k$, apply transformations to the graph of the base function, $y=c^{x}$, where $c>0$.

Example 1: Apply Transformations and Sketch a Graph

Consider the base function $y=3^{x}$. For each transformed function,

- State the parameters and describe the corresponding transformations.
- Write the mapping rule.
- Graph the base function and the transformed function on the same grid.
- State the domain, range, intercepts, and equation of the horizontal asymptote.
a. $y=\frac{1}{3}(3)^{x+4}$
b. $y=2(3)^{-2(x-1)}-5$

Solution:

a. $y=\frac{1}{3}(3)^{x+4}$

- Compare the function $y=\frac{1}{3}(3)^{x+4}$ to $y=a(c)^{b(x-h)}+k$ to determine the values of the parameters.
$\mathrm{a}=$ \qquad , which corresponds to a \qquad by a factor of \qquad .

$$
\mathrm{b}=
$$

\qquad , which corresponds to \qquad .
$\mathrm{h}=$ \qquad , which corresponds to a \qquad of \qquad units \qquad .
$\mathrm{k}=$ \qquad , which corresponds to \qquad .

- Mapping rule: \qquad
- Complete each table of values and sketch the graph of the function $y=\frac{1}{3}(3)^{x+4}$.

$y=3^{x}$	
x	y
-2	
-1	
0	
1	
2	
3	
4	

$y=\frac{1}{3}(3)^{x+4}$	
\mathbf{x}	y

- For the function $y=\frac{1}{3}(3)^{x+4}$:

Domain: \qquad Range: \qquad
x-intercept: \qquad y-intercept: \qquad
Equation of the horizontal asymptote : \qquad

b. $y=2(3)^{-2(x-1)}-5$

- Compare the function $y=2(3)^{-2(x-1)}-5$ to $y=a(c)^{b(x-h)}+k$ to determine the values of the parameters. $a=$ \qquad , which corresponds to a \qquad by a factor of \qquad .
$\mathrm{b}=$ \qquad , which corresponds to a \qquad by factor of \qquad , and a \qquad in the \qquad .
$\mathrm{h}=$ \qquad , which corresponds to a \qquad of \qquad unit \qquad .
$\mathrm{k}=$ \qquad , which corresponds to a \qquad of \qquad units \qquad .
- Mapping rule: \qquad
- Complete each table of values and sketch the graph of the function $y=2(3)^{-2(x-1)}-5$.

$y=3^{x}$	
x	y
-2	
-1	
0	
1	
2	
3	
4	

$y=2(3)^{-2(x-1)}-5$	
x	y

- For the function $y=2(3)^{-2(x-1)}-5$:

Domain: \qquad Range: \qquad
x-intercept: \qquad y-intercept: \qquad
Note - In the next unit, we will learn an algebraic method of solving exponential equations that will
 enable us to determine the value of the x-intercept.

Equation of the horizontal asymptote : \qquad

Example 2: Use Transformations of an Exponential Function to Model a Situation

An initial population of 2000 insects is expected to triple every 5 days.
a. Write an exponential function in the form $y=a(c)^{b x}$ to model this situation.
b. Use your equation to calculate the insect population in 21 days.

Solution:

a. Determine the exponential function $y=a(c)^{b x}$:
b. Insect population in 21 days:

Example 3: Use Transformations of an Exponential Function to Model a Situation

A hockey card that was purchased for $\$ 250$ is expected to increase in value by 12% every 3 years.
a. Write an exponential function in the form $y=a(c)^{b x}$ to model this situation.
b. Use your equation to calculate the value of the card in 5 years.

Solution:

a. Determine the exponential function $y=a(c)^{b x}$:
b. Value of the card in 5 years:

