Solving Exponential Equations

Exponential equation: An equation that has a variable in an exponent

Example 1: Rewriting Powers with a Specified Base

Rewrite each of the following powers with a base of 2 .
a. 32
b. 16^{3}
c. $\sqrt[5]{8}$
d. $\left(\frac{1}{64}\right)^{\frac{1}{3}}$

Solution:
a. $32=$
b. $16^{3}=$
c. $\sqrt[5]{8}=$
d. $\left(\frac{1}{64}\right)^{\frac{1}{3}}=$

Example 2: Solve an Exponential Equation by Using a Common Base

Solve each equation.
a. $\quad 10^{x+4}=1000^{x-4}$
b. $8^{x+2}=\left(\frac{1}{4}\right)^{x+3}$
c. $(\sqrt{3})^{3 x}=9^{2 x+5}$
d. $12^{3 x-9}=1$
e. $5^{x^{2}}=125\left(5^{2 x}\right)$

Solution:
Express each side of the equation as a single power with the same base. Equate the exponents and solve.
a. $\quad 10^{x+4}=1000^{x-4}$
b. $8^{x+2}=\left(\frac{1}{4}\right)^{x+3}$
c. $(\sqrt{3})^{3 x}=9^{2 x+5}$
d. $12^{3 x-9}=1$
e. $5^{x^{2}}=125\left(5^{2 x}\right)$

Example 3: Solve Problems Involving Exponential Equations

A painting quadruples in value every 15 years. It is currently worth $\$ 1000$.
a. Write an exponential function that models the value, V , of the painting after t years.
b. Use your equation to determine the value of the painting in 12 years.
c. Use your equation to determine the time needed for the painting to be worth $\$ 32000$.

Solution:

a. The exponential function can be written in the form $y=a c^{b x}$:
b. Substitute $\mathrm{t}=12$ into your equation and solve for V :
c. Substitute $V=32000$ into your equation and solve for t :

Example 4: Solve Problems Involving Exponential Equations

The half-life of a radioactive substance is 4 days.
a. Write an exponential function that models the amount, A, of the substance remaining after t days.
b. Use your equation to determine the time that must pass until there is 12.5% of the substance remaining.

Solution:

a. The exponential function can be written in the form $y=a c^{b x}$:
b. Substitute $\mathrm{A}=$ \qquad into your equation and solve for t :

