Understanding Logarithms

- The idea of logarithms is to reverse the operation of exponentiation (raising a number to an exponent). For example, we know that 2 cubed equals 8 , or $2^{3}=8$. A logarithm is an exponent to which a fixed base must be raised to obtain a specific value. So, the logarithm of 8 with respect to base 2 equals 3 , or $\log _{2} 8=3$.
- Equations in logarithmic form can be written in exponential form and vice versa. Logarithmic Form: $\log _{c} x=y \quad$ Exponential Form: $c^{y}=x$

Example: $\log _{7} 49=2 \quad$ Example: $7^{2}=49$

- The inverse of an exponential function $y=c^{x}, c>0, c \neq 1$ is $x=c^{y}$ or, in logarithmic form, $y=\log _{c} x$. Conversely, the inverse of a logarithmic function $y=\log _{c} x, c>0, c \neq 1$ is $x=\log _{c} y$ or, in exponential form $y=c^{x}$. The graphs of an exponential function and its inverse logarithmic function are reflections of each other in the line $y=x$.
- A common logarithm has base 10. Common logs are usually written without the base, that is, $\log _{10} x=\log x$.
- Another commonly used base is e. The number e (sometimes called Euler's number or Napier's constant) is an important mathematical constant. It is an irrational number, approximately equal to 2.71828 . Logarithms with base e are known as natural logarithms. The abbreviation "In" is used to indicate the natural log and the base e is not included, that is, $\log _{e} x=\ln x$.

Example 1 : Graph the Inverse of an Exponential Function

Sketch the graph of the exponential function $y=2^{x}$. State its inverse. Then, sketch the graph of the inverse function and identify the following characteristics of the inverse graph:

- domain and range
- x - and y-intercepts, if they exist
- the equations of any asymptotes

Solution:

Complete the table of values for $y=2^{x}$ and its inverse function.

Write the inverse of $y=2^{x}$:

$y=2^{x}$	
x	y
-3	
-2	
-1	
0	
1	
2	
3	

In logarithmic form, the inverse function is:

Sketch the graph of $y=2^{x}$ and its inverse on the same grid.
For the inverse (logarithmic) function identify:
domain: \qquad range: \qquad
x-intercept: \qquad y-intercept: \qquad
vertical asymptote: \qquad

Example 2: Change the Form of an Expression

For each expression in exponential form, rewrite it in logarithmic form. For each expression in logarithmic form, rewrite it in exponential form.
a. $3^{4}=81 \leftrightarrow$ \qquad
b. $64^{\frac{1}{2}}=8 \leftrightarrow$ \qquad
c. $\log _{5} 125=3 \leftrightarrow$ \qquad
d. $\log 10000=4 \leftrightarrow$ \qquad

Example 3: Evaluate a Logarithm

Evaluate the following logarithms.
a. $\log _{6} 216$
b. $\log _{9} 1$
c. $\log _{2} \frac{1}{64}$
d. $\log _{3} \sqrt{27}$

Example 4: Determine a Value in a Logarithmic Expression

Solve for x.
a. $\log _{2} 32=x$
b. $\log _{x}\left(\frac{1}{27}\right)=-3$
c. $\log _{4} x=-2$
d. $\log _{x} 32=\frac{5}{3}$

Example 5: Estimate the Value of a Logarithm

Without using graphing technology, estimate to one decimal place the value of $\log _{2} 52$.
Solution:
Think: "What is the exponent that must be applied to base 2 to obtain 52 ?", and then use systematic trial.
$\log _{2} 52=$ \qquad

