\qquad
\qquad

BLM 3-6

Section 3.4 Extra Practice

1. Solve.
a) $(x+5)(x+2)(x-3)(x-6)=0$
b) $x^{3}-27=0$
c) $(3 x+1)(x-4)(x-7)=0$
d) $x(x+4)^{3}(x+2)^{2}=0$
2. For this graph, identify the following:

a) the zeros
b) the intervals where the function is positive
c) the intervals where the function is negative
3. For the graph of this polynomial function, determine the following:

a) the least possible degree
b) the sign of the leading coefficient
c) the x-intercepts and the factors of the function
d) the intervals where the function is positive and the intervals where it is negative
4. The graph of $y=x^{3}$ is transformed to obtain the graph of $y=-2(4(x+1))^{3}-5$. Copy and complete the table.

$\boldsymbol{y}=\boldsymbol{x}^{\mathbf{3}}$	$\boldsymbol{y}=(\mathbf{4 x})^{\mathbf{3}}$	$\boldsymbol{y}=-\mathbf{2 (4 x})^{\mathbf{3}}$	$\boldsymbol{y}=\mathbf{- 2 (4 (x + 1)) ^ { \mathbf { 3 } } - \mathbf { 5 }}$
$(-2,-8)$			
$(-1,-1)$			
$(0,0)$			
$(1,1)$			
$(2,8)$			

5. The graph of $y=x^{4}$ is transformed to obtain the graph of $y=\frac{1}{4}\left(\frac{1}{2}(x-9)\right)^{4}+3$. Copy and complete the table.

$y=x^{4}$	$y=\left(\frac{1}{2} x\right)^{4}$	$y=\frac{1}{4}\left(\frac{1}{2} x\right)^{4}$	$y=\frac{1}{4}\left(\frac{1}{2}(x-9)\right)^{4}+3$
$(-2,-16)$			
$(-1,1)$			
$(0,0)$			
$(1,1)$			
$(2,16)$			

\qquad Date: \qquad

BLM 3-6

6. For the graph of this polynomial function, determine the following:

a) the least possible degree
b) the sign of the leading coefficient
c) the x-intercepts and the factors of the function
d) the intervals where the function is positive and the intervals where it is negative
7. Without using a graphing calculator, determine the following for
$y=x^{3}+4 x^{2}-x-4$:
a) the zeros of the function
b) the degree and end behaviour of the function
c) the y-intercept
d) the intervals where the function is positive and the intervals where it is negative
8. Sketch a graph of each function without using technology. Label all intercepts.
a) $y=x^{3}-4 x^{2}-5 x$
b) $f(x)=-x^{4}+19 x^{2}+6 x-72$
c) $g(x)=x^{5}-14 x^{4}+69 x^{3}-140 x^{2}+100 x$
9. Determine the equation with least degree for each polynomial function.
a) a cubic function with zeros

3 (multiplicity 2) and -1 , and
y-intercept $=18$
b) a quintic function with zeros
-2 (multiplicity 3) and 4 (multiplicity 2), and y-intercept $=-32$
c) a quartic function with zeros
-1 (multiplicity 2) and 5 (multiplicity 2), and y-intercept $=-10$
10. Determine three consecutive integers with a product of -504 .
11. A toothpaste box has square ends. The length of the box is 12 cm greater than the width. The volume is $135 \mathrm{~cm}^{3}$. What are the dimensions of the box?
12. The dimensions of a rectangular prism are 10 cm by 10 cm by 5 cm . When each dimension is increased by the same length, the new volume is $1008 \mathrm{~cm}^{3}$. What are the dimensions of the new prism?

