Chemistry 112

Learning Opportunities

April 27 - May 1

Percent Composition

Percent composition is used to express the relative amounts of the elements in a compound. The percent by mass of an element in a compound is the number of grams of the element divided by the mass in grams of the compound, multiplied by 100%.
$\%$ mass of element $=\frac{\text { mass of element }}{\text { mass of compound }} \times 100 \%$

See Percent Composition Sample Problem

Practice Problems

1. Calculate the percent of nitrogen in NH_{3}
2. Calculate the percent of nitrogen in $\mathrm{NH}_{4} \mathrm{NO}_{3}$
3. Calculate the percent of oxygen in KMnO_{4}
4. Calculate the percent composition of $\mathrm{C}_{2} \mathrm{H}_{6}$

Empirical Formulas and Molecular Formulas

The empirical formula of a compound shows the smallest whole number ratio of atoms in the compound.
The molecular formula tells the actual number of each kind of atom in a compound. It can be the same as the empirical formula or it is a whole-number multiple of the empirical formula.

Examples:

Empirical Formulas		Molecular formulas
HO	X 2	$\mathrm{H}_{2} \mathrm{O}_{2}$
CH	X 2	$\mathrm{C}_{2} \mathrm{H}_{2}$
CH	X 8	$\mathrm{C}_{8} \mathrm{H}_{8}$
$\mathrm{CH}_{2} \mathrm{O}$	X 6	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
$\mathrm{CH}_{2} \mathrm{O}$	X 2	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
HCl	X 1	HCl

See Empirical Formula Sample Problems

Practice Problems

1. Calculate the empirical formula for a compound that is $62.1 \% \mathrm{C}, 13.8 \% \mathrm{H}$ and $24.1 \% \mathrm{~N}$.
2. Calculate the empirical formula for a compound that is $25.9 \% \mathrm{~N}$ and $74.1 \% \mathrm{O}$.
3. Calculate the empirical formula for a compound that is $40.0 \% \mathrm{C}, 6.7 \% \mathrm{H}$ and $53.3 \% \mathrm{O}$

See Molecular Formula Sample Problems

Practice Problems

1. Find the molecular formula for a substance with a molar mass of $112.16 \mathrm{~g} / \mathrm{mol}$ and the empirical formula $\mathrm{CH}_{2} \mathrm{~N}$.
2. Find the molecular formula for a substance with a molar mass of $62 \mathrm{~g} / \mathrm{mol}$ and the empirical formula $\mathrm{CH}_{3} \mathrm{O}$.
3. Find the molecular formula for a substance with a molar mass of $58 \mathrm{~g} / \mathrm{mol}$ that is $82.5 \% \mathrm{C}$ and 17.5% hydrogen.
4. Find the molecular formula for a substance with a molar mass of $92.0 \mathrm{~g} / \mathrm{mol}$ that is $30.4 \% \mathrm{~N}$ and $69.6 \% \mathrm{O}$.
