Chemistry 112

Learning Opportunities

June 8-12

Solution Concentrations

The concentration of a solution is a ratio that compares the quantity of solute to the quantity of the solution.
Solutions with a small quantity of solute per unit of solution are dilute and solutions with a large quantity of solute per unit of solution are concentrated.

Molarity
Molarity (M) is a measurement of concentration reported on mol /L. It is the moles of solute per liter of solution.
$\mathrm{M}=\frac{n}{v}$
n is the number of moles
v is the volume in liters. $(\mathrm{mL} \div 1000=\mathrm{L})$
Example

1. Calculate the molarity, M , of a sodium chloride solution that has a volume of 300.0 mL and contains 25.0 g of NaCl .
NaCl

$$
1 \times N_{a}=1 \times 22.99 \mathrm{~g} / \mathrm{ma} \mid=22.99
$$

$$
1 \times C \mid=1 \times 35.45 \mathrm{~g} / \mathrm{mol}=35.45
$$

$$
58.44 \mathrm{~g} / \mathrm{mol}
$$

$25.0 \mathrm{~g} \mathrm{NaCl} \times \frac{1 \mathrm{~mol}}{58.44 \mathrm{~g}}=0.43 \mathrm{~mol} \mathrm{NaCl}$
$300.0 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}=0.300 \mathrm{~L}$

$$
M=\frac{n}{v}=\frac{0.43 \mathrm{~mol}}{0.300 \mathrm{~L}}=1.43 \mathrm{~mol} / \mathrm{L} \mathrm{NaCl}
$$

2. What mass of NaNO_{3} is needed to make 2.0 liters of a 1.5 M solution?
\% weight/volume
Concentrations measured in $\% \mathrm{w} / \mathrm{v}$ reports the number of grams of solute per 100 mL of solution.

$$
\begin{aligned}
& \left.M=\frac{n}{v} \xrightarrow{\text { rearrange }} n=M \cdot v \quad \right\rvert\, \times N a=1 \times 22.99 \mathrm{~g} / \mathrm{mp} /=22.99 \\
& 1 \times N=1 \times 14.01 \mathrm{~g} / \mathrm{mol}=14.01 \\
& n=M \cdot v \\
& n=(1.5 M)(2.0 \mathrm{~L}) \\
& 3 \times 0=3 \times 16.00 \mathrm{~g} / \mathrm{mol}=48.00 \\
& 8 \overline{5.00 \mathrm{~g} / \mathrm{mol}} \\
& n=3.0 \mathrm{~mol} \\
& 3.0 \mathrm{mot} \times \frac{85.00 \mathrm{~g}}{1 \mathrm{mot}}=255 \mathrm{~g} \mathrm{NaNO}_{3}
\end{aligned}
$$

$\% \mathrm{w} / \mathrm{v}=\frac{\text { mass of solute }(\text { in } \mathrm{g})}{\text { volume of solution }(\text { in } \mathrm{mL})} \times 100$
Example

1. What mass of salt is present in 750 mL of a $10 \% \mathrm{~W} / \mathrm{V}$ solution?

$$
\begin{aligned}
& \% \frac{w}{v}=\frac{\text { mass solute }}{\text { volumesolution }} \times 100 \% \\
& 10 \% \frac{w}{v}=\frac{\text { mass salt }}{750 \mathrm{~mL}} \times 100 \% \\
& \div 100 \% \\
& \times 750 \% \\
& 0.10=\frac{\text { mass salt }}{750 \mathrm{~mL}} \times 750 \\
& 75 \mathrm{~g}=\text { mass salt }
\end{aligned}
$$

2. What is the $\% \mathrm{w} / \mathrm{v}$ of a solution that has 7.5 g of sodium chloride diluted to 100 mL with deionized water?

$$
\begin{aligned}
& \% \omega / v=\frac{\text { mass solute }}{v o l u m e ~ s o l u t i o n ~} \times 100 \% \\
& \% \frac{w}{v}=\frac{7.5 \mathrm{~g}}{100 \mathrm{~mL}} \times 100 \% \\
& \% \frac{w}{v}=7.5 \% \mathrm{w} /
\end{aligned}
$$

ppm
Parts per million is used to report very small concentrations. It is the number of milligrams $\left(10^{-3} \mathrm{~g}\right)$ of solute per liter of solution.
$\mathrm{ppm}=\frac{\text { mass of solute }(\text { in } \mathrm{mg})}{\text { volume of solution }(\text { in } L)}$
$\mathrm{g} \div 1000=\mathrm{mg}$

Example

1. A solution has a concentration of 4.5 ppm of dissolved oxygen. What volume of water would contain 100 mg of oxygen?

$$
\begin{aligned}
& \text { Ppm }=\frac{\text { mass solute }}{\text { volume solution }} \stackrel{\text { rearrange }}{ } \text { volume }=\frac{\text { mass }}{\text { ppm }} \\
& \text { volume }=\frac{100 \mathrm{mg}}{4.5 p p m} \\
& \text { volume }=22.2 \mathrm{~L}
\end{aligned}
$$

2. Hard water contains 120 ppm of dissolved minerals. If 2.0 L of hard water in a kettle is boiled dry, what mass of minerals is left?
ppm $=\frac{\text { mass }}{\text { volume }} \xlongequal{\text { rearrange }}$ mass = ppm. volume
mass = ppm. volume
$=(120 \mathrm{ppm})(2.0 \mathrm{~L})$
$=240 \mathrm{mg}$

Practice problems

1. Find the molarity when 734 grams of $\mathrm{Li}_{2} \mathrm{SO}_{4}$ are dissolved to make 2500 mL of solution.
2. What mass of $\mathrm{Ca}(\mathrm{OH})_{2}$ is needed to make 5.0 liters of a 0.1 M solution?
3. Calculate the molarity of 198 g of BaBr_{2} in 2.0 L of solution.
4. $\quad 25.0$ grams of sodium chloride (NaCl) is dissolved in 100 mL of solution. What is the concentration of the solution in parts per million (ppm)?
5. The concentration of a solution is $284,000 \mathrm{ppm}$. How many grams of solute is contained in 100 mL of solution?
6. 2.0 L of an aqueous solution of potassium chloride contains 45.0 g of KCl . What is the weight/volume percentage concentration of this solution?
7. 15 mL of an aqueous solution of sucrose contains 750 mg sucrose. What is the weight/volume percentage concentration of this solution?
