Practice problems

1. Find the molarity when 734 grams of $\mathrm{Li}_{2} \mathrm{SO}_{4}$ are dissolved to make 2500 mL of solution.
2. What mass of $\mathrm{Ca}(\mathrm{OH})_{2}$ is needed to make 5.0 liters of a 0.1 M solution?

$$
\begin{array}{ll}
M=\frac{n}{v}, n=M \cdot v & 0.5 \mathrm{~mol} / \mathrm{Ca}(\mathrm{OH})_{2} \times \frac{74.10 \mathrm{~g}}{1 \mathrm{~mol}} \\
n=(0.1 \mathrm{M})(5.0 \mathrm{~L}) & =37.05 \mathrm{~g} \mathrm{Ca}(\mathrm{OH})_{2} \\
n=0.5 \mathrm{~mol} &
\end{array}
$$

$1 \times C a=1 \times 40.08 \mathrm{gmol}=40.08$
$2 \times 0=2 \times 16.00 \mathrm{~g} / \mathrm{mol}=32.00$
$2 \times H=2 \times 1.01 \mathrm{~g} / \mathrm{mol}=\frac{2.02}{74.10 \mathrm{~g} / \mathrm{mol}}$
3. Calculate the molarity of 198 g of BaBr_{2} in 2.0 L of solution.
$1 \times B_{a}=1 \times 137.33 \mathrm{~g} / \mathrm{mal}=137.33$
$2 \times B r=2 \times 79.90 \mathrm{~g} / \mathrm{mol}=\frac{159.80}{297.13 \mathrm{~g} / \mathrm{mol}}$
$198 \mathrm{~g} \mathrm{BaBr} 2 \times \frac{1 \mathrm{~mol}}{297.13 \mathrm{~g}}=0.67 \mathrm{~mol} \mathrm{BaBr} 2$

$$
\begin{aligned}
M & =\frac{n}{V} \\
& =\frac{0.67 \mathrm{~mol}}{2.0 \mathrm{~L}} \\
& =0.34 \mathrm{~mol} / \mathrm{L}
\end{aligned}
$$

4. $\quad 25.0$ grams of sodium chloride (NaCl) is dissolved in 100 mL of solution. What is the concentration of the solution in parts per million (ppm)?
ppm $=\frac{\text { mass }}{\text { volume }}$

$$
100 \mathrm{~mL} \div 1000=0.10 \mathrm{~L}
$$

$$
=\frac{25000 \mathrm{mg}}{0.10 \mathrm{~L}}
$$

$$
25 \mathrm{~g} \times 1000=25000 \mathrm{mg}
$$

$=250000 \mathrm{pm}$
5. The concentration of a solution is $284,000 \mathrm{ppm}$. How many grams of solute is contained in 100 mL of solution?

$$
\begin{aligned}
& 2 \times L_{i}=2 \times 6.94 \mathrm{~g} \text { mol }=13.88 \\
& 1 \times 5=1 \times 32.06 \mathrm{~g} / \mathrm{nol}=32.06 \\
& 4 \times 0=4 \times 16.00 \mathrm{~g} / \mathrm{mol}=\frac{64.00}{109.94} \mathrm{~g} / \mathrm{mol} \\
& 734 \mathrm{~g}_{\mathrm{i}} \mathrm{SO}_{4} \times \frac{1 \mathrm{~mol}}{109.94 \mathrm{~g}}=6.68 \mathrm{~mol} \mathrm{Li} \mathrm{i}_{2} \mathrm{SO}_{4} \\
& \begin{aligned}
M & =\frac{n}{v} \\
& =\frac{6.68 \mathrm{~mol}}{2.5 \mathrm{~L}}
\end{aligned} \\
& =2.67 \mathrm{~mol} / \mathrm{L}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ppm }=\frac{\text { mass }}{\text { volume }} \quad \quad 100 \mathrm{~mL} \div 1000=0.10 \mathrm{~L} \\
& \text { mass }=\text { ppm } \cdot v o l u m e \\
&=(284000 \mathrm{ppm})(0.10 \mathrm{~L}) \\
&=28400 \mathrm{mg} \\
& 28400 \mathrm{mg} \div 1000=28.4 \mathrm{~g}
\end{aligned}
$$

6. $\quad 2.0 \mathrm{~L}$ of an aqueous solution of potassium chloride contains 45.0 g of KCl . What is the weight/volume percentage concentration of this solution?

$$
\begin{aligned}
\% & \frac{w}{v}
\end{aligned}=\frac{\text { mass }}{v o l u m e} \times 100 \% \quad 2.02 \times 1000=2000 \mathrm{~mL}
$$

7. 15 mL of an aqueous solution of sucrose contains 750 mg sucrose. What is the weight/volume percentage concentration of this solution?

$$
\begin{aligned}
\% \frac{w}{v} & =\frac{\text { mass }}{\text { volume }} \times 100 \% \\
& =\frac{0.759}{15 \mathrm{~mL}} \times 100 \% \\
& =5 \% \frac{\mathrm{w}}{\mathrm{~V}}
\end{aligned}
$$

