Name: Kery	Date:	Hour:
$\sqrt{\text{Counting A}}$	toms Note	<u>s</u>
Element Symbols:		
• Elements are represented by letter symb	ols found on the per	iodic table.
• Each element begins with a capital letter	-	•
• Some elements have two or more letters,	but only the first is	capitalized.
• In a chemical formula or equation, a nev	v element is symboliz	zed by a capital letter.
 A chemical formula is a set of cher how many atoms of each element a <u>Example</u>: H₂O is the chemical form 	are present in the su	• •
o A chemical equation is a set of syn Example: $H_2 + O \longrightarrow H_2O$ is the che		
Practice #1:		
 Tell how many elements are represented Hint: The number of capital letters = 		nents!
2) Use the periodic table and write the name	es of the elements th	ne symbols stands for:
o C: 1 element(s) - carbon		
o Ba: 1 element(s) - barium		
o Co: 1 element(s) - cobalt		

o C: 1 element(s) - carbon	
o Ba: 1 element(s) - barium	
o Co: 1 element(s) - cobalt	
o CO:2_ element(s)carbon and oxygen	
o NaCl: 2 element(s) - sodium and chlorine	

Subscripts:

- A subscript is a number written at the lower right of an element symbol.
- A subscript is always written after the symbol.
- Tell what the subscript is for each element in Na_2SO_4 : Na=2 S= none O=4
- If there is no subscript written after a symbol that means there is one atom of that element present.
- If the number 2 is written, that means there are 2 atoms of that element present.
- Subscripts are important! If you change the subscript, you change the substance. Example: H₂O is water, H₂O₂ is hydrogen peroxide. One is healthy to drink, the other is deadly.
 - (Joke: Two scientists walk into bar. The bartender asks what they would like to drink. The first scientist says "I'll have a glass of H₂O please." The second scientist says "I'll have H₂O too." The second scientist dies.)
- The subscript only tells how many atoms there are of the element just before it. Example: Na2SO4 tells us there are 2 atoms of sodium and 4 atoms of oxygen.

Practice #2:

- 1. Draw arrows showing the distribution of the subscripts.
- 2. Write how many atoms of each element are present in these formulas.

o Q₂: 2 atoms of oxygen

o H₂O: 2 atoms of <u>hydrogen</u>

1 atom of oxygen

C₆H₁₂Q₆: 6 atoms of <u>carbon</u>

 12 atoms of <u>hydrogen</u>

 6 atoms of <u>oxygen</u>

o Cl₂: ___2 atoms of __chlorine

Subscripts at the end of Parenthesis:

- A subscript written at the end of a parenthesis gets distributed to all the elements inside the parenthesis.
- Multiply the subscript at the end of the parenthesis with all subscripts inside the parenthesis to determine the number of atoms for each element.
- Do not distribute to or multiply with elements outside of the parenthesis.

Practice #3:

- 1. Draw arrows showing the distribution of the subscripts.
- 2. Write how many atoms of each element are present in each formula:

 \circ $(NO_3)_2$: Nitrogen: (1 x 2) = 2 atoms of nitrogen

Oxygen: $(\underline{3} \times \underline{2}) = \underline{6}$ atoms of oxygen

 \circ Ca₃(PO₄)₂: 3 atoms of calcium (The 2 does not apply to it because Ca is not in the parenthesis)

Phosphate: $(\underline{1} \times \underline{2}) = \underline{2}$ atoms of phosphate

Oxygen: $(\underline{4} \times \underline{2}) = \underline{8}$ atoms of oxygen

Coefficients:

- A coefficient is a number written in front of a chemical symbol or formula.
- A coefficient is always written before the symbol.
- The coefficient tells the number of atoms of that element that are present or how many of those molecules are present.
- When you change the coefficient, you change how much of the substance you have.
- Examples: C = 1 atom of carbon, 3C = 3 atoms of carbon $C_6H_{12}O_6 = 1$ sugar molecule, $10C_6H_{12}O_6 = 10$ sugar molecules
- The coefficient also helps determine how many atoms of each element are present in the compound.
- The coefficient number is distributed to all elements in the entire formula. (Remember, each element begins with a capital letter.)
- If an element symbol has both a coefficient and a subscript, multiply the two numbers together to determine the total number atoms of that element.
- Coefficients do not carry over into symbols or formulas after a + or -> sign in an equation.

Practice #4:

- 1. Draw arrows showing the distribution of the coefficients and subscripts.
- 2. Tell how many molecules and/or atoms of each element are present in each:
 - \circ 50: _5 atoms of oxygen
 - \circ $5\overset{\frown}{0}_{2}$: 10 atoms of oxygen
 - o 4NaCl: 4 molecules of salt
 4 atoms of sodium
 4 atoms of chlorine

o 6H₂O: <u>6</u> molecules of water <u>12</u> atoms of hydrogen <u>6</u> atoms of oxygen

o 3Na₂SO₄: 3 molecules of sodium sulfate
6 atoms of sodium
3 atoms of sulfur
12 atoms of oxygen

o $5Ca_3(PO_4)_2$: ___5 molecules of calcium phosphate ___15 atoms of calcium ___10 atoms of phosphate ___40 atoms of oxygen

Remember to multiply the coefficient with the subscripts!

Element written twice in a formula:

- This is the only time you add numbers when counting atoms.
- Each time the element appears, determine the number of atoms using the guidelines already given.
- Add the values you determined together to get the total number of atoms of that element in the substance.

Practice #5: Determine the number of hydrogen atoms in the following formulas:

0	$NH_4C_2H_3O_2$:	first time H appears: 4	
	.0 .0	second time H appears: <u>3</u>	
		total # of hydrogen atoms in this molecule:	7
0	2(NH ₄) ₃ H:	first time H appears: 24	
		second time H appears: <u>2</u>	
	_	total # of hydrogen atoms in this molecule:	26