Quick Review

- > You can think of multiplication as repeated addition.
 - $4 \times (-3)$ is the same as adding -3 four times.

As a sum:
$$(-3) + (-3) + (-3) + (-3) = -12$$

As a product:
$$4 \times (-3) = -12$$

On a number line:

- You can use tiles to multiply integers.
 - Let a circle represent the bank. The bank has zero value at the start.

Multiply:
$$(+2) \times (-3)$$

- +2 is a positive integer.
- -3 is modelled with 3 black tiles.
- So, put 2 sets of 3 black tiles into the circle.

So,
$$(+2) \times (-3) = -6$$

- -2 is a negative integer.
- -3 is modelled with 3 black tiles.

So, we need to take 2 sets of 3 black tiles from the circle.

Add zero pairs until there are enough black tiles to remove. Take out 2 sets of 3 black tiles.

There now are 6 white tiles left in the circle.

So,
$$(-2) \times (-3) = 6$$

Practice

1. Write a multiplication expression for each repeated addition.

a)
$$(-2) + (-2) + (-2) + (-2) + (-2) = 5 \times$$

c)
$$(+2) \times (-3) =$$
 _____ d) $(-4) \times (+5) =$ _____

d)
$$(-4) \times (+5) =$$

5. Use a model to represent each product. Draw the model you used each time.

a)
$$(-3) \times (-4) =$$
 _____ b) $(+2) \times (-5) =$ _____

b)
$$(+2) \times (-5) =$$

c)
$$(+7) \times (+2) =$$
 d) $(-3) \times (+6) =$

d)
$$(-3) \times (+6) =$$

6. The temperature dropped 2°C each hour for 4 h. Use integers to find the total change in temperature.

Quick Review

- Integers have these properties of whole numbers.
 - Multiplying by 0: $4 \times 0 = 0$ and $0 \times 4 = 0$ So, $(-4) \times 0 = 0$ and $0 \times (-4) = 0$
 - Multiplying by 1: $4 \times 1 = 4$ and $1 \times 4 = 4$ So, $(-4) \times (+1) = -4$ and $(+1) \times (-4) = -4$
 - Commutative Property: $4 \times 2 = 8$ and $2 \times 4 = 8$ So, $(-4) \times (+2) = -8$ and $(+2) \times (-4) = -8$
 - Distributive Property: $4 \times (2+3) = 4 \times 2 + 4 \times 3 = 20$ So, $(-4) \times [(+2) + (+3)] = (-4) \times (+2) + (-4) \times (+3) = -20$
- You can write the product of integers without the use of the × sign. $(-4) \times (+2)$ can simply be written as: (-4)(+2)
- ➤ When 2 integers with the same sign are multiplied, their product is positive. (-2)(-3) = +6(+2)(+3) = +6

When 2 integers with different signs are multiplied, their product is negative.

$$(+2)(-3) = -6$$

$$(-2)(+3) = -6$$

Practice of the same of the sa

1. Find a pattern rule for each multiplication pattern. Extend the pattern for 3 more rows.

a)
$$(+3)(+3) = +9$$

b)
$$(-3)(+3) = -9$$

$$(+2)(+3) = +6$$

$$(-3)(+2) = -6$$

$$(+1)(+3) = +3$$

$$(-3)(+1) = -3$$

$$(0)(+3) =$$
 $(-3)(0) =$

$$(-3)(0) =$$

HINI

To find a pattern rule, look for a pattern in the

integer factors and in the products.

2. In this chart, write the sign of each product of multiplying 2 integers.

×	positive integer	negative integer
positive integer		
negative integer		-

- When 2 integer factors have the same sign, their product is _____.
- When 2 integer factors have different signs, their product is _______

3. Find each product.

a)
$$(+7)(-2) =$$
 b) $(-4)(-3) =$

b)
$$(-4)(-3) =$$

d)
$$(+10)(-5) =$$
 _____ e) $(+5)(-7) =$ _____

e)
$$(+5)(-7) =$$

f)
$$(-9)(-4) =$$

k)
$$(+20)(-20) =$$

4. Fill in the blank to make each equation true.

b)
$$\times$$
 (-9) = +99

b)
$$\times$$
 (-9) = +99 c) (-10) \times = -320

d)
$$\times$$
 (-5) = +20

e)
$$(+7) \times \underline{\hspace{1cm}} = -49$$

d)
$$\times (-5) = +20$$
 e) $(+7) \times (-5) = -49$ f) $\times (+13) = -65$

g) _____ ×
$$(-15) = -180$$
 h) $(+14)$ × ____ = -140 i) ___ × $(-7) = 56$

h)
$$(+14) \times \underline{\hspace{1cm}} = -140$$

i) _____
$$\times$$
 (-7) = 56

5. Match each pattern rule with the corresponding pattern. Complete each pattern and pattern rule.

Number Pattern

Pattern Rule

Start at 2. Multiply by _____ each time.

Start at 1. Multiply by -10 each time.

Start at _____. Multiply by -3 each time.

Start at 3. Multiply by -1 each time.

Start at -1. Multiply by ______ each time.