Quick Review

What you do to one side of the equation, you also do to the other side.

Isolate the *x*-tiles by adding 3 black tiles to make zero pairs. Then remove the zero pairs.

Arrange the tiles on each side into 2 equal groups. Compare groups.

One *x*-tile equals 1 white tile. So, x = 1.

HO.

A white square tile models +1 and a black square tile models -1. These are called unit tiles. White rectangular tiles model variable tiles, or x-tiles. One white unit tile and one black unit tile form a zero pair.

Replace 5 g in the right pan with 3 g and 2 g. Then remove 3 g from each pan.

The unknown masses are isolated in the left pan, and 2 g is left in the right pan.

The two unknown masses balance 2 g. So, each unknown mass is 1 g.

So, x = 1.

Practice

1. Write the equation modelled by each of the following.

c)					
----	--	--	--	--	--

2. Construct a model to represent each equation. Then solve the equation using your model. Verify the solution.

a)
$$x + 3 = 9$$

b)
$$3 = 2x - 5$$

c)
$$4x + 3 = 11$$

d)
$$14 = 5x + 4$$

3. Draw a model for each equation and the steps of its solution. Verify the solution.

a)
$$a + 4 = 5$$

b)
$$6 = c - 4$$

c)
$$y-2=4$$

d)
$$5 = x + 3$$

4. Draw a model for each equation and the steps of its solution. Verify the solution.

a)
$$2v = 6$$

b)
$$4n = -8$$

c)
$$5 = 5y$$

d)
$$-6 = 3r$$

5. Draw a model to represent the steps you took to solve each equation. Verify the solution.

a)
$$3x + 2 = 11$$

b)
$$-5 = 5 + 2y$$

6. Five more than twice a number is seven. Let n represent the number.

a) Write an equation you can use to solve for n.

b) Represent the equation for this problem with a model. Use the model to solve the equation.

c) Verify the solution and write a concluding statement.

7. One less than three times a number is eleven. Write an equation and use a model to solve the problem. Verify the solution and write a concluding statement.

Quick Review

In Section 6.1, you solved the equation 2x - 3 = 1 using algebra tiles. You are going to solve the same equation using algebra and compare it to the algebra tile model.

Algebra tile model

Isolate the x-tiles by adding +3 to both sides

Remove zero pairs.

Arrange the tiles on each side into 2 equal groups.

x = 2

Algebra steps

$$2x - 3 = 1$$

2x - 3 + 3 = 1 + 3

$$2x = 4$$

Divide both sides by 2 to isolate the *x*-variable:

$$\frac{2x}{2} = \frac{4}{2}$$

$$x = 2$$

Practice:

1. Write the equation modelled by each set of algebra tiles. Then solve the equation using both the algebra tile method and the algebra method.

a) _____

2. Sketch algebra tiles to represent each equation. Then solve the equation using both the algebra tile method and the algebra method.

a)
$$2y - 1 = 7$$

b)
$$-4 = 2 + 3a$$

3. Use algebra to solve each equation. Verify the solution.

a)
$$6m + 5 = -7$$

b)
$$3c-2=2$$

The solution is _____.

The solution is _____

c)
$$2 + 5y = 2$$

d)
$$4-3x=-5$$

The solution is _____.

The solution is _____.

4. Each solution has an error. Check the solution and show that it is incorrect. Then show a correct solution.

a)
$$3y-4=8$$

 $3y-4+4=8+4$
 $3y=12$
 $3y-3=12-3$
 $y=9$

b)
$$9 = 6 - 2x$$

 $9 + -6 = 6 - 6 - 2x$
 $15 = -2x$
 $\frac{15}{-2} = \frac{-2x}{-2}$
 $-7\frac{1}{2} = x$

The solution is _____.

The solution is _____.

- **5.** For each part below, let the number be *n*. Write an equation and solve it algebraically, verify the solution, and then write a concluding statement.
 - a) Four less than three times a number is fourteen.
- b) The sum of twelve and twice a number is forty-four.