
# 12.3 Limiting Reagent and Percent Yield

## 1 FOCUS

### **Objectives**

- 12.3.1 Identify the limiting reagent in a reaction.
- 12.3.2 Calculate theoretical yield, percent yield, and the amount of excess reagent that remains unreacted given appropriate information.

Dec 13-3:29 PM



Apr 12-9:58 AM



#### Determining the Limiting Reagent in a Reaction

Copper reacts with sulfur to form copper(I) sulfide according to the following balanced equation.

 $2Cu(s) + S(s) \longrightarrow Cu_2S(s)$ 

What is the limiting reagent when 80.0 g Cu reacts with 25.0 g S?

$$\frac{|m_0|(C_0)}{63.555} = \frac{|m_0|}{802} \qquad \frac{|m_0|(S)}{32.07} = \frac{|m_0|}{755}$$

$$\frac{n = 1.26 m_0 les}{1 m_0 les} \qquad \frac{n = 0.78 m_0 les}{1.56 m_0 les} = \frac{1}{1.56 m_0 les}$$

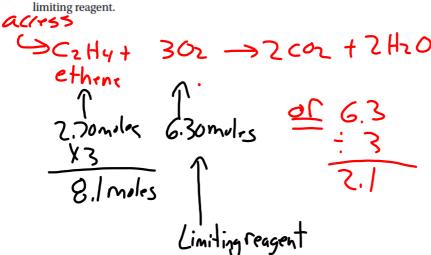
Apr 12-9:58 AM

25 The equation for the complete combustion of ethene

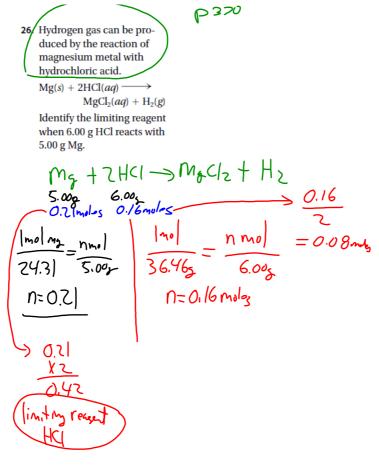
$$(C_2H_4)$$
 is

$$C_2H_4(g) + 3O_2(g) \longrightarrow$$
  
 $2CO_2(g) + 2H_2O(g)$ 

If 2.70 mol C<sub>2</sub>H<sub>4</sub> is reacted


with 6.30 mol O2, identify the

limiting reagent.


CzHy +302 -> 2 COz +2 (-120 2.70 mile 6.30ml

25. The equation for the complete combustion of ethene  $(C_2H_4)$  is  $C_2H_4(g) + 3O_2(g)$  $2\mathrm{CO}_2(g) + 2\mathrm{H}_2\mathrm{O}(g)$ If 2.70 mol C<sub>2</sub>H<sub>4</sub> is reacted with 6.30 mol O2, identify the





Apr 12-9:58 AM



26. Hydrogen gas can be produced by the reaction of magnesium metal with hydrochloric acid.

$$Mg(s) + 2HCl(aq) \longrightarrow MgCl_2(aq) + H_2(g)$$

Identify the limiting reagent when 6.00 g HCl reacts with 5.00 g Mg.

Apr 12-9:58 AM



26. Hydrogen gas can be produced by the reaction of magnesium metal with hydrochloric acid.

$$Mg(s) + 2HCl(aq) \longrightarrow MgCl_2(aq) + H_2(g)$$

Identify the limiting reagent when 6.00 g HCl reacts with 5.00 g Mg.

Mg+ ZHCI -> MgClz + HZ

P371

#### **SAMPLE PROBLEM 12.8**

Using a Limiting Reagent to Find the Quantity of a Product

What is the maximum number of grams of  $\text{Cu}_2\text{S}$  that can be formed when 80.0 g Cu reacts with 25.0 g S?

 $2Cu(s) + S(s) \longrightarrow Cu_2S(s)$ 

Apr 12-9:59 AM

P371

#### **SAMPLE PROBLEM 12.8**

Using a Limiting Reagent to Find the Quantity of a Product

What is the maximum number of grams of  $\text{Cu}_2\text{S}$  that can be formed when 80.0 g Cu reacts with 25.0 g S?

$$\begin{array}{c}
\text{Y } \frac{1}{2} \\
\text{So}_{3} \\
\text{So}_{3}
\end{array}$$

$$\begin{array}{c}
\text{So}_{3} \\
\text{So}_{3}
\end{array}$$

$$\begin{array}{c}
\text{So}_{3} \\
\text{So}_{3}
\end{array}$$

1.26(u +0.63561 > 0.63 Cuzs

Apr 12-9:59 AM

The equation below shows the incomplete combustion of ethene.

$$C_2H_4(g) + 2O_2(g) \longrightarrow$$
  
 $2CO(g) + 2H_2O(g)$ 

If 2.70 mol  $C_2H_4$  is reacted with 6.30 mol  $O_2$ ,

- a. identify the limiting reagent.
- calculate the moles of water produced.

28. The heat from an acetylene torch is produced by burning acetylene (C<sub>2</sub>H<sub>2</sub>) in oxygen.

$$2C_2H_2(g) + 5O_2(g) \longrightarrow 4CO_2(g) + 2H_2O(g)$$

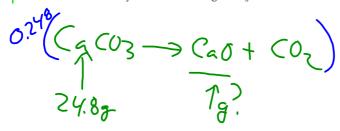
How many grams of water can be produced by the reaction of  $2.40 \text{ mol } C_2H_2 \text{ with } 7.4 \text{ mol } O_2$ ?

Apr 12-9:59 AM

28. The heat from an acetylene torch is produced by burning acetylene (C<sub>2</sub>H<sub>2</sub>) in oxygen.

$$\begin{aligned} 2 \text{C}_2 \text{H}_2(\textit{g}) &+ 5 \text{O}_2(\textit{g}) \longrightarrow \\ 4 \text{CO}_2(\textit{g}) &+ 2 \text{H}_2 \text{O}(\textit{g}) \end{aligned}$$

How many grams of water can be produced by the reaction of  $2.40 \text{ mol } C_2H_2 \text{ with } 7.4 \text{ mol } O_2$ ? P374


#### **SAMPLE PROBLEM 12.9**

#### Calculating the Theoretical Yield of a Reaction

Calcium carbonate, which is found in seashells, is decomposed by heating. The balanced equation for this reaction is:

$$CaCO_3(s)$$
  $\longrightarrow$   $CaO(s) + CO_2(g)$ 

What is the theoretical yield of CaO if 24.8 g CaCO<sub>3</sub> is heated?



$$\frac{100.19}{100.19} = \frac{9.0.248}{24.98} = \frac{100.19}{56.18} = \frac{24.98}{24.98} = \frac{100.19}{56.18} = \frac{0.248}{24.98}$$

Apr 12-10:00 AM

29. When 84.8 g of iron(III) oxide reacts with an excess of carbon monoxide, iron is produced

$$\begin{aligned} \text{Fe}_2\text{O}_3(s) + 3\text{CO}(g) &\longrightarrow \\ 2\text{Fe}(s) + 3\text{CO}_2(g) \end{aligned}$$

What is the theoretical yield of this reaction?

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

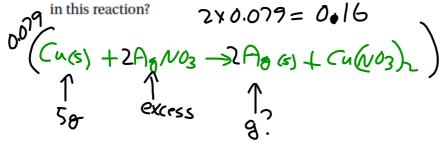
$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$

$$0.3 = 1.06$$


$$0.3$$

$$\frac{|mol \, Fe_{203}|}{|59.688|} = \frac{|mol \, Fe_{203}|}{|84.88|} = \frac{|.06mol \, Fe_{203}|}{|x|} = \frac{|.06mol \, Fe_{203}|}{|x|}$$

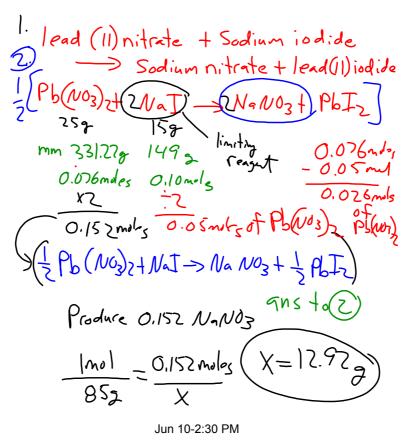
$$\frac{|n=0.53|}{|x|} = \frac{|x|}{|x|} = \frac{|.06mol \, Fe_{203}|}{|x|} = \frac{|.06mol \, Fe_{203}|}{|x|}$$

Apr 12-10:00 AM

with excess silver nitrate, silver metal and copper (II)
nitrate are produced. What is
the theoretical yield of silver



$$\frac{|mo|cn}{63.55} = \frac{n}{58}$$
 $n = 0.079$ 


Apr 12-10:00 AM

### **Limiting Reagent Worksheet**

Using your knowledge of stoichiometry and limiting reagents, answer the following questions:

- Write the balanced equation for the reaction of lead (II) nitrate with sodium iodide to form sodium nitrate and lead (II) iodide:
- 2) If I start with 25.0 grams of lead (II) nitrate and 15.0 grams of sodium iodide, how many grams of sodium nitrate can be formed?
- 3) What is the limiting reagent in the reaction described in problem 2?
- 4) How much of the <u>nonlimiting</u> reagent will be left over from the reaction in problem #2?

## Limiting Reagent Worksheet

