The satellites of Mars, Phobos and Deimos, have mean orbital radii of 9.38 × 10<sup>6</sup> m and 2.35 × 10<sup>7</sup> m, respectively. The orbital period of Deimos is 30.30 hr. Use Kepler's third law of planetary motion to predict the period of Phobos.

Phobos.

$$\begin{aligned}
& \Gamma_{A} = 9.38 \times 10^{6} \text{ (Phobos)} \\
& \Gamma_{B} = 2.35 \times 10^{6} \text{ (Phobos)} \\
& \Gamma_{B} = 30.30 \text{ (Deimos)} \\
& \Gamma_{B} = 30.30 \text{ (Deimos)}
\end{aligned}$$

$$\frac{T_{A}}{30.3d} = \frac{9.38 \times 10^{6} \text{ m}}{2.35 \times 10^{7} \text{ m}}$$

2. Use Kepler's third law to predict the altitude of a Martian satellite that would have a period of 24.0 h.

$$\left(\frac{+\alpha}{+\alpha}\right)^2 = \left(\frac{\alpha}{13}\right)^3$$

$$\left(\frac{24h}{30.30}\right) = \left(\frac{r_{\text{A}}}{2.35 \times 10^{3} \text{m}}\right)$$

5. What is the gravitational attraction between two protons ( $m_{\text{proton}} = 1.67 \times 10^{-27} \text{ kg}$ ) at a distance of  $5.0 \times 10^{-15} \text{ m}$ , about the diameter of the nucleus of an atom?

 $F = G m_1 m_2 = (6.67 \times 10^{-11}) (1.67 \times 10^{-27} kg)$   $(5.0 \times 10^{-15} m)^2$   $(5.0 \times 10^{-15} m)^2$ 

6. Two bowling balls, each with a mass of 6.80 kg, are 1.00 m apart. Compare the weight of the first ball with the gravitational force exerted on it by the second ball.

$$F = \frac{G M_1 M_2}{r^2} = \frac{(6.60 \times 10^{-11})(6.30 + 3)}{(1 m)^2}$$

$$F = 3.08 \times 10^{-9} N$$