1. The satellites of Mars, Phobos and Deimos, have mean orbital radii of $9.38 \times 10^{6} \mathrm{~m}$ and $2.35 \times 10^{7} \mathrm{~m}$, respectively. The orbital period of Deimos is 30.30 hr. Use Kepler's third law of planetary motion to predict the period of Phobos.
2. Use Kepler's third law to predict the altitude of a Martian satellite that would have a period of 24.0 h .
3. Use Newton's form of Kepler's third law and the information about Deimos in Problem 1 to determine the mass of Mars.
4. The Martian moon, Deimos, has a mass of $2.4 \times 10^{15} \mathrm{~kg}$ and an average radius of 6.4 km . What is the acceleration of gravity at its surface?
5. What is the gravitational attraction between two protons ($m_{\text {proton }}=1.67 \times 10^{-27} \mathrm{~kg}$) at a distance of $5.0 \times 10^{-15} \mathrm{~m}$, about the diameter of the nucleus of an atom?
6. Two bowling balls, each with a mass of 6.80 kg , are 1.00 m apart. Compare the weight of the first ball with the gravitational force exerted on it by the second ball.
