B Universal Gravitation

- 1. The satellites of Mars, Phobos and Deimos, have mean orbital radii of 9.38×10^6 m and 2.35×10^7 m, respectively. The orbital period of Deimos is 30.30 hr. Use Kepler's third law of planetary motion to predict the period of Phobos.
- **2.** Use Kepler's third law to predict the altitude of a Martian satellite that would have a period of 24.0 h.
- **3.** Use Newton's form of Kepler's third law and the information about Deimos in Problem 1 to determine the mass of Mars.
- 4. The Martian moon, *Deimos*, has a mass of 2.4×10^{15} kg and an average radius of 6.4 km. What is the acceleration of gravity at its surface?
- 5. What is the gravitational attraction between two protons ($m_{\text{proton}} = 1.67 \times 10^{-27}$ kg) at a distance of 5.0×10^{-15} m, about the diameter of the nucleus of an atom?
- **6.** Two bowling balls, each with a mass of 6.80 kg, are 1.00 m apart. Compare the weight of the first ball with the gravitational force exerted on it by the second ball.

- 7. Saturn's rings are made of particles moving in orbits around the planet. The inner edge of the closest ring has a radius of 6.7×10^4 km while the radius of the outer edge of the farthest ring is 4.8×10^5 km. The mass of Saturn is 5.69×10^{26} kg.
 - **a.** Calculate the velocity of a particle near the inner edge of the closest ring.
 - **b.** What is the period of this particle?
 - **c.** How do the answers of 6a and 6b compare to the velocity and period of a particle orbiting near the outer edge of the farthest ring?
- 8. The mass of the moon is 7.34×10^{22} kg and its average radius is 1785 km.
 - **a.** Between January, 1998, and December, 1998, the *Lunar Prospector* was in a nearly circular orbit around the moon at an altitude of 1.0×10^2 km. What was the period of the *Lunar Prospector* in minutes?
 - **b.** What was its velocity when it was in the orbit at 1.0×10^2 km?
- **9.** At the moon's surface g_{MOON} has a value of 1.59 m/s². What is the value of the acceleration of gravity at an altitude of 1.00×10^2 km above the moon's surface?
- **10.** Use Table 8-1 in the text to find the sun's gravitational field strength at Earth's orbit.