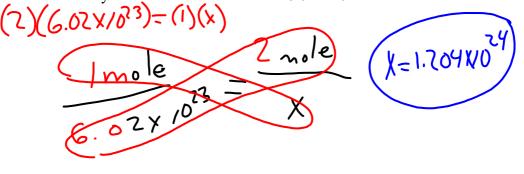
10.1 The Mole: A Measurement of Matter


Objectives

- 10.1.1 Describe methods of measuring the amount of something.
- 10.1.2 Define Avogadro's number as it relates to a mole of a substance.
- 10.1.3 Distinguish between the atomic mass of an element and its molar mass.
- 10.1.4 Describe how the mass of a mole of a compound is calculated.

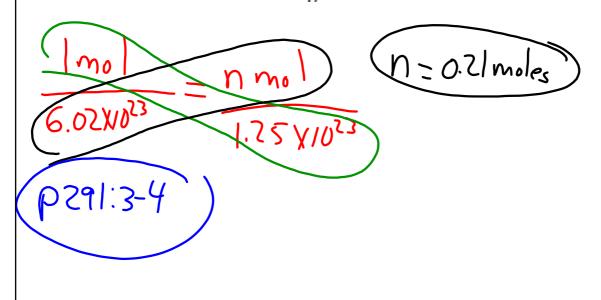
Nov 6-8:29 PM

Table 10.1 P 2 9 0						
Representative Particles and Moles						
Substance	Representative particle	Chemical formula	Representative particles in 1.00 mole			
Atomic nitrogen	Atom	N	6.02×10^{23}			
Nitrogen gas	Molecule	N ₂	6.02×10^{23}			
Water	Molecule	H ₂ O	6.02×10^{23}			
Calcium ion	lon	Ca ²⁺	6.02×10^{23}			
Calcium fluoride	Formula unit	CaF ₂	6.02×10^{23}			
Sucrose	Molecule	C ₁₂ H ₂₂ O ₁₁	6.02×10^{23}			

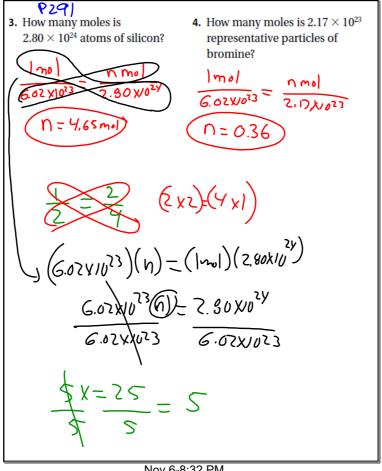
One mole of any atom or molecule contains 6.02×10^{23} atoms or molecules.

$$\frac{2}{2} = \frac{2}{4}$$

$$\frac{4}{4} = \frac{4}{4}$$


Mar 19-8:32 AM

Converting Number of Atoms to Moles


Magnesium is a light metal used in the manufacture of aircraft, automobile wheels, tools, and garden furniture. How many moles of magnesium is 1.25×10^{23} atoms of magnesium?

Converting Number of Atoms to Moles

Magnesium is a light metal used in the manufacture of aircraft, automobile wheels, tools, and garden furniture. How many moles of magnesium is 1.25×10^{23} atoms of magnesium?

Mar 24-12:56 PM

Nov 6-8:32 PM

3. How many moles is 2.80×10^{24} atoms of silicon?

(OSX/053 =

4. How many moles is 2.17×10^{23} representative particles of bromine?

1mile 6.0241023

Mar 20-10:00 AM

Answers

- 3. 2.80×10^{24} atoms Si × 1 mol/6.02 × 10^{23} atoms = 4.65 mol Si
- 4. 2.17×10^{23} representative particles \times 1 mol/6.02 \times 10²³ representative particles \pm 0.360 mol Br₂

Converting Moles to Number of Atoms

P272

Propane is a gas used for cooking and heating. How many atoms are in 2.12 mol of propane (C_3H_9) ?

$$\frac{|m_0|}{6.02 \times 10^{23}} = \frac{2.12 m_0 lrs}{X}$$

$$X = |.28 \times 10^{24}$$

- atoms Fe - Particle - Molecules tho P292:5-6

Nov 6-8:33 PM

Converting Moles to Number of Atoms

P272

Propane is a gas used for cooking and heating. How many atoms are in 2.12 mol of propane (C_3H_9) ?

$$\frac{|m_0|}{6.02 \times 10^{23}} = \frac{2.12 m_0 |r_0|}{x}$$

- atoms Fe - Particle - Molecule tho

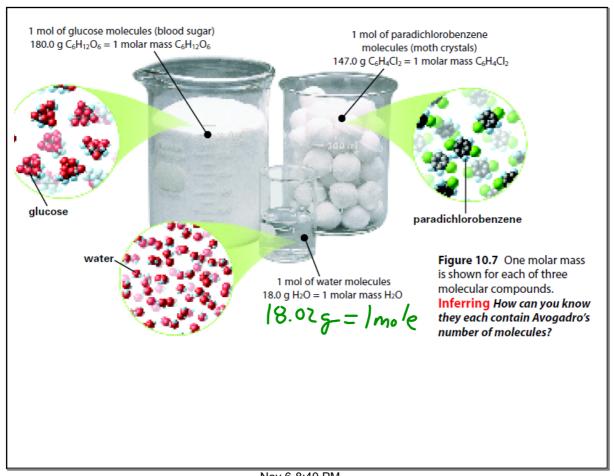
P292:5-6

5. How many atoms are in 1.14 mol SO_3 ?

$$\frac{|m_0|}{6.02 \times 10^{23}} = \frac{|.14 m_0|}{\chi}$$

$$(\chi = 6.86 \times 10^{23})$$

6. How many moles are in 4.65×10^{24} molecules of NO₂?

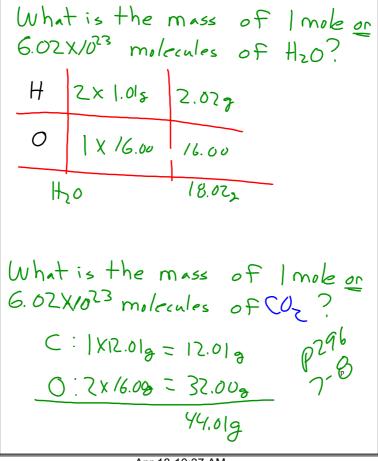

Nov 6-8:33 PM

Answers

- 5. $1.14 \text{ mol} \times 6.02 \times 10^{23} \text{ molecules/}$ $\text{mol} \times 4 \text{ atoms/molecule} = 2.75 \times 10^{24} \text{ atoms}$
- 6. 4.65×10^{24} molecules $NO_2 \times 1$ mol/ 6.02×10^{23} molecules = 7.72 mol NO_2

P293					
CARBON ATOMS		HYDROGEN ATOMS		MASS RATIO	
Number	Mass (amu)	Number	Mass (amu)	Mass carbon Mass hydrogen	
•	12	•	1	$\frac{12 \text{ amu}}{1 \text{ amu}} = \frac{12}{1}$	
••	24 [2 × 12]	00	2 [2 × 1]	$\frac{24 \text{ amu}}{2 \text{ amu}} = \frac{12}{1}$	
00000	120 [10 × 12]	00000	10 [10 × 1]	$\frac{120 \text{ amu}}{10 \text{ amu}} = \frac{12}{1}$	
000000000000000000000000000000000000000	600	000000000000000000000000000000000000000	50 [50 × 1]	$\frac{600 \text{ amu}}{50 \text{ amu}} = \frac{12}{1}$	
Avogadro′s number	$(6.02 \times 10^{23}) \times (12)$	Avogadro′s number	$3.02 \times 10^{23}) \times (1)$	$\frac{(6.02 \times 10^{23}) \times (12)}{(6.02 \times 10^{23}) \times (1)} = \frac{12}{1}$	

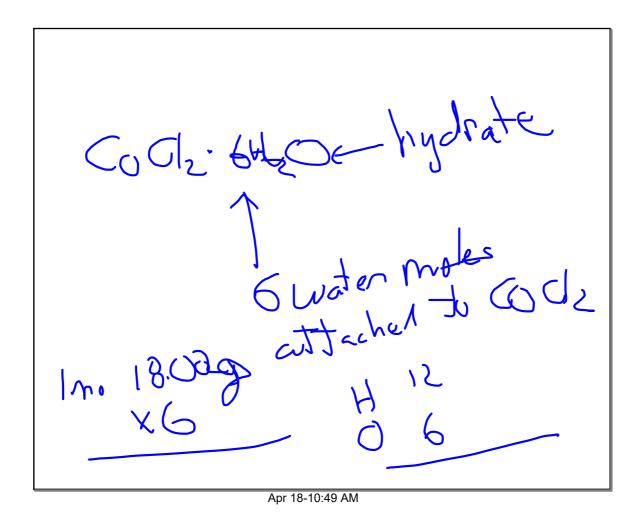
Nov 6-8:35 PM


The Mass of a Mole of a Compound

To find the mass of a mole of a compound, you must know the formula of the compound. The formula of sulfur trioxide is SO_3 . A molecule of SO_3 is composed of one atom of sulfur and three atoms of oxygen.

You can calculate the mass of a molecule of SO_3 by adding the atomic masses of the atoms making up the molecule. From the periodic table, the atomic mass of sulfur (S) is 32.1 amu. The mass of three atoms of oxygen is three times the atomic mass of a single oxygen atom (O): 3×16.0 amu = 48.0 amu. So, the molecular mass of SO_3 is 32.1 amu + 48.0 amu = 80.1 amu.

Nov 6-8:42 PM



Apr 18-10:37 AM

Apr 18-10:37 AM

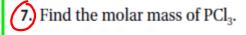
What is the molar mass of Soz?

Apr 18-10:42 AM

SAMPLE PROBLEM 10.4

P296

Finding the Molar Mass of a Compound


The decomposition of hydrogen peroxide (H₂O₂) provides sufficient energy to launch a rocket. What is the molar mass of hydrogen peroxide?

H:
$$2 \times 1.01g = 2.02g$$

O: $2 \times 16.00g = 32g$
mw HzOz 34.02g

Nov 1-2:39 PM

P296

Practice Problems

8. What is the mass of 1.00 mol of sodium hydrogen carbonate?

8. What is the mass of 1.00 mol of sodium hydrogen carbonate?

Nat
$$HCO_3$$

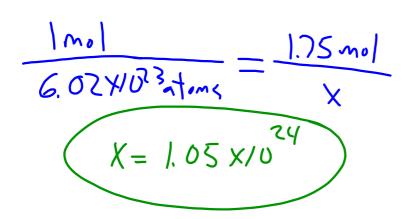
Na: $|x22.99_8 = 22.99_8$

Na: $|x|22.99_8 = 22.99_8$

H: $|x|1.01_8 = 1.01_8$

C: $|x|12.01_8 = 12.01_8$

O: $|x|12.01_8 = 48.00_8$


Mar 19-9:19 AM

10.1 Section Assessment

P296

- 9. **Key Concept** What are three ways to measure 3 the amount of something?
- 10. Skey Concept Describe the relationship between Avogadro's number and one mole of an 6024023 = 1.504/023 substance.
- 11. **Key Concept** How is the atomic mass of an element related to the molar mass of the element? 2.5 \forall 1/0
- **12.** Key Concept How can you calculate the mass of a mole of a compound?
- 13. How many moles is 1.50×10^{23} molecules NH₃?
- 14. How many atoms are in 1.75 mol CHCl₃?
- 15. What is the molar mass of CaSO₄?

14. How many atoms are in 1.75 mol CHCl₃?

Apr 11-2:28 PM

15. What is the molar mass of CaSO₄?

Ca 504

Sodium Carbonate

Nat CO32
Naz CO3

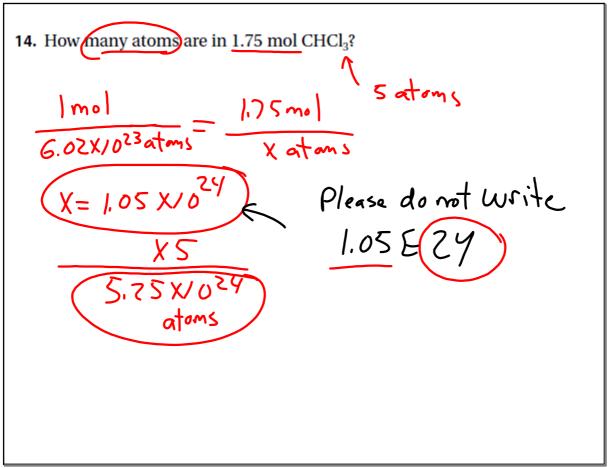
Na: 2

C: 1

O3:

Mar 24-1:20 PM

Calcium Bromate


(a? + Bro3
Ca (Bro3) 2

Ca: 1×40.078 = 40.078 +

Br: 2×79.904 = 159.808 +

0:6×16.00 - 96.00 &

295.886 -

Nov 2-2:05 PM

Section 10.1 Assessment

- 9. by count, by mass, and by volume
- **10.** One mole of any substance contains Avogadro's number (6.02×10^{23}) of representative particles.
- **11.** The molar mass of an element is its atomic mass expressed in grams.
- **12.** Add together the masses, expressed in grams, of each element in one mole of the compound.
- 13. $2.49 \times 10^{-1} \text{ mol NH}_3 = 0.249$
- **14.** 5.27×10^{24} atoms
- 15. 136.2 g/mol